Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-(4-Fluoro-3-phenoxyphenyl)-3-phenyl-4,5-dihydroisoxazole

Deepak Chopra, ${ }^{\text {a* }}$ T. P. Mohan ${ }^{\text {b }}$ and B Vishalakshi ${ }^{\text {b }}$

${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Mangalore University, Bangalore 574 199, Karnataka, India

Correspondence e-mail:
deepak@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.081$
$w R$ factor $=0.207$
Data-to-parameter ratio $=8.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FNO}_{2}$, is chiral, having an asymmetric C atom, and is found to crystallize in a noncentrosymmetric space group. The five-membered isoxazole ring exists in an envelope conformation. The crystal structure is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Recent synthetic efforts have established the importance of biologically active heterocyclic compounds (Foti et al., 2004). Of particular importance are the derivatives of isoxazoles, representing one of the most active class of compounds, widely used in agrochemicals and pharmaceuticals (He et al., 2004). Such compounds have been studied from a synthetic (Bruno et al., 2004) and also from a structural viewpoint (Zhong et al., 2005). These have also been used in natural product synthesis and proven to be efficient precursors for many key synthetic intermediates, including γ-aminoalcohols and β-hydroxyketones (Kozikowski, 1984; Kanemasa \& Tsuge, 1990). Spirooxazoles have exhibited herbicidal, plant-regulatory and

[^0]antitumour activities (Howe \& Shelton, 1990; De Amici et al., 1990; Smietana et al., 1999). In view of the important applications of such a class of compounds and in continuation of our interest in the chemistry of isoxazoles, we report here the molecular and crystal structure of the title compound, (I).

(I)

The total puckering amplitude (Cremer \& Pople, 1975) of the isoxazole ring is $Q(2)=0.130(6) \AA$ and $\varphi(2)=140(1)^{\circ}$ [$\varphi(2)=36 k$; envelope conformation, $k=4$) in compound (I), indicating that the five-membered ring exists in an envelope conformation. Atom C13 is displaced by 0.209 (5) \AA from the O2/N1/C14/C15 plane. Furthermore, the phenyl and isoxazole rings make a dihedral angle of $4.7(2)^{\circ}$, whereas the fluorophenoxy moiety is orthogonal to the five-membered ring, the dihedral twist being 78.2 (2) ${ }^{\circ}$.

The crystal structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions (Table 2), forming molecular $C(4)$ (Bernstein et al., 1995) chains along the crystallographic b axis and hence a layer consisting of chiral molecules (Fig. 2).

Figure 1
: The structure of compound (I), drawn with 50% ellipsoidal probability (arbitrary spheres for H atoms).

Figure 2
: Packing diagram highlighting $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (dotted lines) in (I). H atoms not involved in these interactions have been omitted. The atom marked by ' has the symmetry code $\left(-x+\frac{1}{2}, y-\frac{1}{2}, z-\frac{1}{2}\right)$.

Experimental

The title compound was synthesized in accordance with the procedure reported in the literature (Joseph et al., 2004; Archana et al., 2002). Single crystals were grown by dissolving $10-15 \mathrm{mg}$ of the sample in dichloromethane/hexane ($2: 1 \mathrm{v} / \mathrm{v}$) and allowing the solvent to evaporate at $275-277 \mathrm{~K}$ (in a refrigerator) to obtain crystals of suitable size and quality.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FNO}_{2}$	$Z=4$
$M_{r}=333.35$	$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, Pna2 $_{1}$	Mo K radiation
$a=33.31(2) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$b=8.840(6) \AA$	$T=290(2) \mathrm{K}$
$c=5.749(4) \AA$	Block, colourless
$V=1693.0(19) \AA^{3}$	$0.43 \times 0.12 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.948, T_{\max }=0.998
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.207$
$S=1.32$
1873 reflections
226 parameters
H-atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 14$	$1.279(7)$	$\mathrm{C} 15-\mathrm{C} 13$	$1.534(8)$
$\mathrm{N} 1-\mathrm{O} 2$	$1.422(6)$	$\mathrm{O} 2-\mathrm{C} 13$	$1.465(8)$
$\mathrm{C} 15-\mathrm{C} 14$	$1.510(8)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O}^{2}$	0.97	2.36	$3.305(7)$	166
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2}, z-\frac{1}{2}$.				

H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene) and $0.98 \AA$ (methine), and refined in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank Professor T. N. Guru Row, Indian Institute of Science, and the Department of Science and Technology, India, for data collection on the CCD facility under the IRHPA-DST scheme. DC thanks CSIR, India, for a Junior Research Fellowship.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Archana, Srivastava, V. K., Chandra, R. \& Kumar, A. (2002). Indian J. Chem. Sect. B, 41, 2371-2375.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, G., Rotondo, A., Grassi, G., Foti, F., Risitano, F. \& Nicoló, F. (2004). Acta Cryst. C60, 0496-o497.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
De Amici, M., De Micheli, C. \& Misani, V. (1990). Tetrahedron, 46, 19751986.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Foti, F., Grassi, G., Risitano, F., Rotondo, E. \& Zona, D. (2004). Synlett, pp. 1577-1578.
He, H.-W., Li, M.-Q. \& Huang, G.-L. (2004). Pesticides, 8, 4-7.
Howe, R. K. \& Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.
Joseph, M. S., Totagi, R. S. \& Basanagoudar, L. D. (2004). Indian J. Chem. Sect. $B, 43,964-970$.
Kanemasa, S. \& Tsuge, O. (1990). Heterocycles, 30, 719-736.
Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Smietana, M., Gouverneur, V. \& Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291-1294.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zhong, B., Li, Z.-M. \& Song, H.-B. (2005). Acta Cryst. E61, o2621-o2622.

[^0]: © 2006 International Union of Crystallography All rights reserved

